Omar A. Ashour

Postdoctoral Researcher, Berkeley Lab

☑ oash@lbl.govゼ · # omarashour.comゼ · ☎ Scholarゼ · ۞ oashourゼ

Theoretical physicist specializing in interpretable AI, working at the intersection of deep learning, statistical mechanics, and mathematical physics. Research encompasses mechanistic interpretability of deep neural nets and development of physically-informed generative models for materials science and structural biology.

Education

University of California, Berkeley

2019 - 2025

PhD, Theoretical and Computational Physics

Advisor: Sinéad Griffin

MA, Physics

Dissertation: Dark Matter Couture: Designer Targets and Tailored Detectors for Next-Generation Searches

University of California, Berkeley

2017 - 2019

MS, Applied Science (College of Engineering)

Thesis: The Nonlinear Schrödinger Hierarchy: from Quasi Rogue Waves to Nonlinear Talbot Carpets

Texas A&M University

2013 - 2017

BS, Electrical Engineering (Summa Cum Laude)

Thesis: Maximal Intensity Higher-Order Breathers of the Nonlinear Schrödinger Equation

Professional Experience

Postdoctoral Researcher

Lawrence Berkeley National Lab

Computing Sciences Area and Molecular Foundry

07/25 - Present

- Developing physics-inspired analytical frameworks for mechanistic interpretability.
- o Validating these techniques on real models, ranging from small neural nets to state-of-the-art language models.
- Building physically interpretable generative models for materials science and structural biology.

Quantum Computing PhD Intern

NERSC

In collaboration with NASA and QuEra

05/24 - 08/24

- Designed an alternative loss function for a standard quantum algorithm— $\mathcal{O}(N^2)$ vs. $\mathcal{O}(N^4)$ measurements.
- Implemented loss function in a circuit simulator and ran $\mathcal{O}(10^6)$ numerical experiments on molecules.
- o Identified chemical systems where the new algorithm's accuracy is comparable to original implementation.

Selected Software Packages

[Python with MPI/Numba]

Parallel, high-throughput package for calculating dark matter interactions with materials.

🕠 pymatgen.io.espresso 🕏

[Python]

Infrastructure package democratizing the standard computational materials science stack.

Quesadilla [™]

[Python/Fortran]

Drop-in replacement for the community standard package for phonon calculations, but with linear (vs cubic) scaling.

Selected Research Projects

Quantum Materials for Dark Matter Detection and Quantum Sensing

- Devised novel approaches for dark matter detection employing new tools from condensed matter physics.
- Developed several analytical techniques and computational implementations to validate my approach.
- Served as a bridge between materials scientists, particle physicists, and stakeholders.
- Mentored two students who received funding to develop experimental implementations of my theoretical proposals.

Efficient Solvers for Nonlinear Schrödinger-type PDEs in Julia [arXiv]

- Independently conceived and developed the Julia package ۞ NonlinearSchrodinger.jl ☑ from the ground up.
- o Fine-tuned 32 numerical algorithms that optimize performance within this specialized problem domain.
- o Devised the first open-source numerical implementation of the analytical Darboux Transformation method.
- o Implemented a simple API and data visualization tools enabling calculation of PDE solutions with a few lines of code.

Selected Fellowships and Awards

Finalist for the University of California President's Postdoctoral Fellowship	2025
Elected to full membership of Sigma Xi	2025
Ovshinsky Travel Award, American Physical Society, Division of Materials Physics	2024
Berkeley Graduate Fellowship, University of California, Berkeley	2017 - 2019
Anselmo J. Macchi Graduate Fellowship, University of California, Berkeley	2018 – 2019
Richard E. Ewing Award for excellence in student research, Texas A&M University	2016

Skills and Tools

Programming Python; Julia; FORTRAN; MATLAB; C/C++.

Python Stack NumPy; Numba; MPI4Py; SciPy; Pandas; Gudhi; PyTorch.

Numerics ODEs; Nonlinear, coupled, and diffusion PDEs; SDEs; Topological data analysis.

Math PDEs; Diff. geometry; Group/representation theory; Lie theory; Algebraic topology.

HPC MPI, OpenMP, OpenACC. 12 years of experience with clusters.

Misc. Git; CI/CD; Docker; Kubernetes; Basic webdev (Flask, PostgreSQL, MongoDB, JS).

Tangent Bundle

Gardening: I maintain a digital garden for research and pedagogy at https://ashour.dev ☑.

4x MVP: I was voted Most Valuable Physicist by my research group (2021–2024) for community building.

Languages: English (bilingual), Arabic (bilingual), Spanish/French/German (abysmal).

Hobbies: I build mechanical keyboards and enjoy reading (currently geopolitics, spy thrillers, and sci-fi).

Erdös-McDonald's number: 19 (= Erdös number [™] + # of countries where I've tried McDonald's).

Addendum: Selected Publications

- * Equal Contribution † Corresponding Author
 - Guy C. Moore, Matthew K. Horton, Aaron D. Kaplan, Omar A. Ashour, Sinéad M. Griffin, and Kristin A. Persson. Noncollinear ground states of solids with a source-free XC functional, *Phys. Rev. B*, 111, 094417 (2025).
 - Thomas F. Harrelson, Ibrahim Hajar, <u>Omar A. Ashour</u>, and Sinéad M. Griffin. Theoretical investigation of decoherence channels in athermal phonon sensors, *J. Phys. Condens. Matter*, 37, 015002 [™] (2025).
 - Nicholas Dale*, Omar A. Ashour*, Marc Vila, Justin Fox, Resham Regmi, Alexei Fedorov, Alexander Stibor, Nirmal Ghimire, and Sinéad M. Griffin. Non-relativistic spin splitting above and below the fermi level in a g-wave altermagnet (2024). [arXiv:2411.18761] [c] (Under Review at Nature)
 - 2024 Omar A. Ashour[†] and Sinéad M. Griffin. Pressure-tunable targets for light dark matter direct detection: the case of solid helium (2024). [arXiv:2409.02439] [Cunder Review at Phys. Rev. Letters]
 - Na Hyun Jo*, <u>Omar A. Ashour</u>*, Zhixue Shu, Chris Jozwiak, Aaron Bostwick, Sae Hee Ryu, Kai Sun, Tai Kong, Sinéad M. Griffin, and Eli Rotenberg. Effects of strain, defects, and interactions on the topological properties of HfTe₅, *Phys. Rev. B*, **109**, 235122 [2024], *Editor's Suggestion*.
 - 2022 Stanko N. Nikolić, Sarah Alwashahi, <u>Omar A. Ashour</u>, Siu A. Chin, Najdan B. Aleksić, and Milivoj R. Belić. Multi-elliptic rogue wave clusters of the nonlinear Schrödinger equation on different backgrounds, *Nonlinear Dynamics*, 108, 479–490 [2] (2022).
 - 2022 Omar A. Ashour[†], Siu A. Chin, Stanko N. Nikolić, and Milivoj R. Belić. Higher-order breathers as quasi-rogue waves on a periodic background, *Nonlinear Dynamics*, 107, 3819–3832 [™] (2022).
 - Thais Chagas*, <u>Omar A. Ashour</u>*, Guilherme Ribeiro, Wendell Silva, Zhenglu Li, Rogério Magalhães-Paniago, Yves Petroff, and Steven G. Louie. Multiple strong topological gaps and hexagonal warping in Bi₄Te₃, *Physical Review B*, **105**, L081409 (2022).
 - Milivoj R. Belić, Stanko N. Nikolić, <u>Omar A. Ashour</u>, and Najdan B. Aleksić. On different aspects of the optical rogue waves nature, *Nonlinear Dynamics*, 108, 1655–1670 [™] (2022).
 - 2021 Omar A. Ashour[†]. Nonlinear Schrödinger: higher-order algorithms and Darboux transformations for nonlinear Schrödinger equations (2021). [arXiv:2103.14469] ☑
 - 2019 Stanko N. Nikolić, <u>Omar A. Ashour</u>, Najdan B. Aleksić, Yiqi Zhang, Milivoj R. Belić, and Siu A. Chin. Talbot carpets by rogue waves of extended nonlinear Schrödinger equations, *Nonlinear Dynamics*, 97, 1215−1225 (2019).
 - Stanko N. Nikolić, <u>Omar A. Ashour</u>, Najdan B. Aleksić, Milivoj R. Belić, and Siu A. Chin. Breathers, solitons and rogue waves of the quintic nonlinear Schrödinger equation on various backgrounds, *Nonlinear Dynamics*, **95**, 2855–2865 (2019).
 - Stanko N. Nikolić, Najdan B. Aleksić, <u>Omar A. Ashour</u>, Milivoj R. Belić, and Siu A. Chin. Systematic generation of higher-order solitons and breathers of the Hirota equation on different backgrounds, *Nonlinear Dynamics*, **89**, 1637–1649 (2017).
 - Runze Li, Omar A. Ashour, Jie Chen, H. E. Elsayed-Ali, and Peter M. Rentzepis. Femtosecond laser induced structural dynamics and melting of Cu (111) single crystal: an ultrafast time-resolved x-ray diffraction study, *Journal of Applied Physics*, 121, 055102 (2017).
 - Siu A. Chin, Omar A. Ashour, Stanko N. Nikolić, and Milivoj R. Belić. Peak-height formula for higher-order breathers of the nonlinear Schrödinger equation on non-uniform backgrounds, *Physical Review E*, 95, 012211 (2017).
 - 2016 Siu A. Chin, Omar A. Ashour, Stanko N. Nikolić, and Milivoj R. Belić. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation, *Physics Letters A*, 380, 3625–3629 (2016).
 - Siu A. Chin, <u>Omar A. Ashour</u>, and Milivoj R. Belić. Anatomy of the Akhmediev breather: cascading instability, first formation time, and Fermi-Pasta-Ulam recurrence, *Physical Review E*, **92**, 063202 (2015).